The least inert prime in a real quadratic field

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The least inert prime in a real quadratic field

In this paper, we prove that for any positive fundamental discriminant D > 1596, there is always at least one prime p ≤ D0.45 such that the Kronecker symbol (D/p) = −1. This improves a result of Granville, Mollin and Williams, where they showed that the least inert prime p in a real quadratic field of discriminant D > 3705 is at most √ D/2. We use a “smoothed” version of the Pólya–Vinogradov in...

متن کامل

An Upper Bound on the Least Inert Prime in a Real Quadratic Field

It is shown by a combination of analytic and computational techniques that for any positive fundamental discriminant D > 3705, there is always at least one prime p < p D=2 such that the Kronecker symbol (D=p) = ?1.

متن کامل

On the least prime primitive root modulo a prime

We derive a conditional formula for the natural density E(q) of prime numbers p having its least prime primitive root equal to q, and compare theoretical results with the numerical evidence. 1. Theoretical result concerning the density of primes with a given least prime primitive root Let us denote, following Elliott and Murata [4], by g(p) and G(p) the least primitive and the least prime primi...

متن کامل

Irregularity of Prime Numbers over Real Quadratic Fields

The concept of regular and irregular primes has played an important role in number theory at least since the time of Kummer. We extend this concept to the setting of arbitrary totally real number fields k0, using the values of the zeta function ζk0 at negative integers as our “higher Bernoulli numbers”. Once we have defined k0-regular primes and the index of k0-irregularity, we discuss how to c...

متن کامل

Note on the Units of a Real Quadratic Field

(here b and a run over the quadratic nonresidues and quadratic residues, respectively, that lie between 0 and p) is a unit of the real quadratic field R(y/p), and that 77> 1. The fact that -n > 1 is usually deduced from the theory of the classnumber of quadratic fields. We present a short proof independent of the theory of the class-number. As in the paper of Chowla and Mordell [Note on the non...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2012

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-2012-02579-8